Source code for bladedesigner.camberlines.n6scamberline
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# ***************************************************************************
# * Copyright (C) 2011-2012 by Andreas Kührmann [kuean@users.sf.net] *
# * *
# * *
# * This program is free software; you can redistribute it and/or modify *
# * it under the terms of the GNU General Public License as published by *
# * the Free Software Foundation; either version 3 of the License, or *
# * (at your option) any later version. *
# * *
# * This program is distributed in the hope that it will be useful, *
# * but WITHOUT ANY WARRANTY; without even the implied warranty of *
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
# * GNU General Public License for more details. *
# * *
# * You should have received a copy of the GNU General Public License *
# * along with this program; if not, write to the *
# * Free Software Foundation, Inc., *
# * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
# ***************************************************************************
import numpy as np
import bladedesigner.baseclasses as bcls
import bladedesigner.foundation as fdn
__all__ = ['N6SCamberLine']
[docs]class N6SCamberLine(bcls.AnalyticalCamberLine):
"""
The NACA 6-Series camberline is a function of the design lift
coefficient :math:`c_l` and the chordwise extent of uniform loading a, the
pressure distribution decreases till the position b and remains zero
till the trailing edge.
"""
def __init__(self):
super(N6SCamberLine, self).__init__()
# properties (initialized by user)
self.__lift_coefficient = fdn.Uninit('lift_coefficient')
self.__end_const_pressure = fdn.Uninit('end_const_pressure')
self.__start_zero_pressure = fdn.Uninit('start_zero_pressure')
# add user properties to initialization summary
self._properties.extend(['lift_coefficient', 'end_const_pressure'])
self._properties.append('start_zero_pressure')
@property
def end_const_pressure(self):
return self.__end_const_pressure
@end_const_pressure.setter
@fdn.restrict(new_end_const_pressure=fdn.ClosedInterval(0, 1))
def end_const_pressure(self, new_end_const_pressure):
if self.__end_const_pressure != new_end_const_pressure:
self.__end_const_pressure = new_end_const_pressure
self.update()
@property
def lift_coefficient(self):
"""
Type: ``int or float``
"""
return self.__lift_coefficient
@lift_coefficient.setter
@fdn.restrict(new_lift_coefficient=(int, float))
[docs] def lift_coefficient(self, new_lift_coefficient):
if self.__lift_coefficient != new_lift_coefficient:
self.__lift_coefficient = new_lift_coefficient
self.update()
@property
def start_zero_pressure(self):
return self.__start_zero_pressure
@start_zero_pressure.setter
@fdn.restrict(new_start_zero_pressure=fdn.ClosedInterval(0, 1))
def start_zero_pressure(self, new_start_zero_pressure):
if self.__start_zero_pressure != new_start_zero_pressure:
self.__start_zero_pressure = new_start_zero_pressure
self.update()
def __f(self, x):
f = lambda y: 0 if y == 0 else y ** 2 * (np.log(np.fabs(y)) - .5)
return f(x) if not hasattr(x, '__iter__') else np.array(map(f, x))
def __dfdx(self, x):
f = lambda x: 0 if x == 0 else x * np.log(x ** 2)
return f(x) if not hasattr(x, '__iter__') else np.array(map(f, x))
@fdn.memoize
def get_derivations(self):
self._check_initialization()
self._cached = True
# get helper fuction f with its derivation dfdx
f = self.__f
dfdx = self.__dfdx
# calculate parameters
a = self.end_const_pressure
b = self.start_zero_pressure
c = self.lift_coefficient / 6.28318530718 / (a + b)
d = .5 / (b - a)
g = -d * (f(a) - f(b))
h = d * (f(1 - a) - f(1 - b)) + g
# get distributed x values
x = self.distribution(self.sample_rate)
z = x[1:-1]
# calculate derivations
dydx = np.empty(x.shape)
dydx[0] = np.inf
dydx[1:-1] = c * (d * (dfdx(z - a) - dfdx(z - b)) - np.log(z) - 1 - h)
dydx[-1] = -np.inf
return dydx
@fdn.memoize
def as_array(self):
self._check_initialization()
self._cached = True
# get helper fuction f
f = self.__f
# calculate parameters
a = self.end_const_pressure
b = self.start_zero_pressure
c = self.lift_coefficient / 6.28318530718 / (a + b)
d = .5 / (b - a)
g = -d * (f(a) - f(b))
h = d * (f(1 - a) - f(1 - b)) + g
# get distributed x values
x = self.distribution(self.sample_rate)
z = x[1:-1]
# calculate corresponding y values
y = np.zeros(x.shape)
y[1:-1] = c * (d * (f(a - z) - f(b - z)) - z * np.log(z) + g - h * z)
return np.reshape(np.append(x, y), (-1, 2), "F")